
Lessons Learned by Use of (C)OTS

'DASIA 98'

- Data Systems in Aerospace -

Athens, Greece

May 25 - 28, 1998

Rainer Gerlich

BSSE System and Software Engineering

Auf dem Ruhbuehl 181
D-88090 Immenstaad

Phone: +49/7545/91.12.58
Mobile: +49/171/80.20.659
Fax: +49/7545/91.12.40
e-mail: gerlich@t-online.de

www: http://home.t-online.de/home/gerlich/

BSSE System and Software Engineering

BSSE System and Software Engineering

Lessons Learned by Use of (C)OTS1

Rainer Gerlich
BSSE System and Software Engineering

Auf dem Ruhbuehl 181
D-88090 Immenstaad, Germany

Phone +49/7545/91.12.58 Mobile: +49/171/80.20.659 Fax +49/7545/91.12.40
e-mail: gerlich@t-online.dewww: http://home.t-online.de/home/gerlich/

Abstract: Software reuse and Commercial Off- the-Shelf
Software (COTS) is considered as a means to reduce
software development costs and time. However, this
does not come for free. Each such product may have its
own li fecycle during which its properties may be
changed. Also, a full view on the code may not be
possible. In case of problems a user may need the
support of the vendor - before the project finishes. Such
drawbacks become even more important when
developing highly reliable, fault-tolerant systems. This
paper discusses pro's and con's and lists a number of
problems and gives suggestions how to protect against
such impacts. It also compares COTS with non-
commercial Off- the-Shelf Software (called OTS here).
For the reference project Linux as OTS turned out as
rather stable and suitable for a commercial, fault-tolerant
system while some COTS products caused some
crashes. By introduction of clear interfaces and use of
standards the project could survive.

OTS on one side and between (C)OTS and development
from scratch on the other side are outlined from this
organisational point of view.

It may be expected that by use of (C)OTS development
costs and time can be saved. However, this saving has to
be compared with increased procurement, test and
acceptance effort and possibly with additional
development effort needed to select, adapt or to
integrate the (C)OTS software to specific user needs.

In any case, we have to look for suff iciently reliable
(C)OTS packages either according to already available
knowledge or by an evaluation exercise. We also have to
take into account the mid-term and long-term
availabilit y of (C)OTS packages and we need to make
our architecture robust against potential changes by
suppliers.

So it has to be analysed carefully whether use of
(C)OTS will be really helpful in practice and what has to
be done to succeed.Keywords: Commercial Off- the-Shelf Software

(COTS), reliabilit y, cost aspects, software development
lifecycle, Linux 2. ANALYSIS OF PRO'S AND CON'S

1. INTRODUCTION COTS means "Commercial Off-The-Shelf Software"
and covers commonly used software packages like
operating systems (OS), databases (DB), graphical user
interfaces (GUI) etc. For such areas non-commercial
software (OTS) is also available, for which Linux is an
example. In the following, "OTS" means "freely
available" software of which sources are available. For
such public domain software of which sources are not
provided similar conclusions are valid as for COTS.

During DASIA'97 a panel discussion about "Cost
aspects of the use of commercial off- the-shelf software"
(COTS) was held during which pro's and con's were
discussed in view of reliable system applications. One
position is that only software which has been built
according to well -known (high quality) standards is
acceptable for aerospace and similar applications. The
other position is that (C)OTS software may be
acceptable if procurement, test and acceptance
procedures are properly defined and appropriate
components can be found on the market.

2.1 An Example Project

During a recent commercial project COTS and OTS
packages such as OS, DB and GUI were used. The
project required fault-tolerance in order to ensure
continuous operation all over the day because the system
collects data which are needed for charging of services.
Hence, loss of data means loss of money, and this is the
basic motivation to achieve the needed degree of fault
tolerance. So compared to aerospace or air traff ic

This paper discusses more problems and solutions
related to use of COTS and (non-commercial) OTS
based on recent experience in a project. Especially, it
identifies a number of organisational problems which
have to be considered beside the principal problem of
reliabilit y and quality. Differences between COTS and

1 The brackets around the "C" shall i ndicate that also freely available, not only commercial software will be
addressed.

- 2 -

BSSE System and Software Engineering

control systems the mission-critical or safety-critical
aspects are not relevant.

and the openness of Linux lead to a higher number of
potential solutions.

The short-term development schedule (seven months
planned) and the restricted budget lead to the decision to
use (C)OTS packages for the project. In fact, there was
no other choice. And at the end, the project could be
completed successfully and we had learned a lot which
will lower the risk for future exercises with (C)OTS.

More generally: if suff iciently reliable less
organisational problems will occur for an OTS package
compared with COTS. From this view point an OTS
package is similar to own software: like for own
software sources are available and a user does not
depend on a supplier and his policy. This becomes even
more important when products from different suppliers
have to be integrated.Due to the required fault tolerance the system

architecture is nearly identical with fault-tolerant
aerospace systems: two hot-redundant sets of
components (processor and communication lines) with
cross-coupled data channels and channels for status
exchange, the capabilit y to reconfigure after loss of a
chain and to take the repaired chain into operation
without any need to stop the complete system. However,
the most significant difference to aerospace software
was the need to select commercial hardware and as
much (C)OTS as possible. The following components
have been taken into account: a PC platform, TCP/IP,
ISDN, RS232 and SysV-IPC as communication media,
and the COTS/OTS packages Solaris/x86 [1], Linux [2],
Oracle [3], Adabas [4], Borland C++ [5], GNU tools
(including C compiler) [6], Teles ISDN drivers for
Intelx86 [7], ObjectGEODE [8].

In case of Solaris/x86 and Oracle both vendors followed
own company specific policies: SUN is pushing Java
[14] and gives weak support for (MS) Windows, while
Oracle is pushing (MS) Windows and does (currently)
not support an integrated link between Java and a
database.

To summarise: apart from reliabilit y and stabilit y
considerations an OTS package may be the better choice
when going to replace own software development by
(C)OTS packages. COTS packages may impose serious
constraints on a project, and hence may not be helpful
for the project, at all.

Finally, if (C)OTS is used more organisational problems
may have to be solved than in case of project specific
development from scratch. However, by adequate means
such problems can be mastered if a project intending to
integrate several (C)OTS packages needs another
development approach and management procedures than
a pure project specific development from scratch.

2.2 (C)OTS vs. Project Specific Software
Development

One argument against use of (C)OTS is that it may not
be suff iciently tested and hence will i mply a risk for
later operation. However, this conclusion may not be
completely right. Software development from scratch
may still i nclude bugs due to insuff icient number of
tests, even if development standards and test and
acceptance procedures exist. The full i nsight view on the
software may not prevent existence of bugs when the
software has passed the acceptance procedure.

The pro's and con's are discussed in more detail i n the
next section.

2.3 COTS vs. OTS

Major cornerstones on the way to a final decision
towards COTS or OTS are: responsibilit y for the
package, openness of the package, flexibilit y of the
supplier, saving of investments, future evolution,
validity of product information.

On the other side, (C)OTS which is commonly used may
have already been subject of a variety of tests applied by
different users. Therefore, the number of remaining bugs
in such software may be lower than the corresponding
number of software developed in accordance with high
quality standards, but tested only by one user or project.

The discussion below will show that from an
organisational and management point of view more
positive arguments for OTS are found. What is
considered as a positive argument for COTS, may turn
out as a problem when a COTS package is integrated
into a more complex environment.

In case of COTS the supplier defines properties of his
product on which a user may rely on, at least there exists
a contractual relationship which gives a user rights to get
a product which is compliant with the product
description. This is different for OTS.

1.Responsibility

In case of COTS there is a commercial partner
which takes over (at least some) responsibilit y for a
product's properties and maintenance. This is
(usually) not true for OTS, e.g. in case of Linux no
off icial responsible exists who will respond if a
problem occurs. There is a community which may
provide an answer, but there is no contractual
relationship to somebody.

The question may be raised now whether an "OTS"
package like Linux for which nobody feels directly
responsible may be appropriate for a project requiring a
certain level of reliabilit y. The specific answer in this
case is: Linux as OTS turned out to be more stable (from
an overall perspective) than the equivalent COTS
software package Solaris/x86 or MS-Windows. And, it
allowed a feasible solution (probably the only one) at
the end in a puzzle of COTS components: the high
variety of support given by the large Linux community

However, the potential advantage of having clear
responsibiliti es may become a serious disadvantage.
E.g. when a problem occurs at the interface between

- 3 -

BSSE System and Software Engineering

two COTS packages it may happen that vendor 1
says it is a problem of package 2, and vendor 2
refuses to take care of the problem because he
thinks it is a problem of package 1. This will cause a
deadlock for the user. In case one of the packages is
of type OTS a user can (may) remove the deadlock
by changing the sources (preferably in an upward
compatible manner).

So openness of a COTS package will help to
succeed as it minimises the risks of its usage in case
a user wants to apply the package in "non-standard"
manner, but still moving within the supplier's
envelope. Such "non-standard" usage may already
occur when a COTS package is integrated with
another one.

3.Flexibility of the supplier
Such experience we made for Oracle/Borland C++
and Oracle/Solaris/x86 (and also for the HP
hardware platform and Solaris/x86). Oracle dropped
support for Borland C++ by a later version because
problems at the interface could not be solved.
Solaris/x86 did not provide the support we needed
for the Oracle GUI.

In case of a "non-standard" application a problem
with a (C)OTS package may be solved if the
supplier is willi ng to provide a solution within a
reasonable time. When a responsible rejects to react
the supposed advantage of having clear
responsibilities becomes a major disadvantage.

In case of OTS either a user can help himself or he
may get support from a large community.

Missing responsibilit y in case of OTS may cause
that COTS vendors do not to support OTS
packages. So there may be a problem to integrate an
OTS package with a COTS package in order to
complement the functionaliti es. This occurred for
Oracle/Linux.

The lesson we learned relates to a hardware-COTS
interface. For the HP-PC platform [9] we got a
problem with the graphics chip set. Although the S3
chip set appeared in the hardware compatibilit y list
of Solaris/x86, it did not work for the HP-PC. The
response from SUN was: yes the S3 is supported,
but this HP model does not appear in the list, and
we do not guarantee that our drivers will work
correctly and therefore we do not give further
support. The position of HP was: we delivered this
model with Windows95 and there it works. We
don't care about Solaris/x86.

2.Openness of a software package

Openness of a software package may be needed to
adapt existing software to user specific needs or to
identify and/or to remove a bug. Openness of a
COTS package brings it closer to OTS and own
software and hence lowers the risks for the project.

If a supplier is flexible enough (see point 3 below)
and feels responsible like a user expects, openness
may not be required because then the needed
modifications will be made by the supplier.
However, then more money may be needed to pay
for the modification.

The problem was solved at short-hand by buying an
additional graphics adapter and later on by moving
to Linux.

4.Saving of investments

It may happen that a certain feature disappears with
the next update. This may cause serious problems
for a user, if he applied the dropped feature and an
equivalent feature is not provided. In case of OTS
he still can access the relevant sources and may add
them to the updated version.

In such a case OTS has a major advantage because
everybody can modify / extend the existing software
(preferably by well -defined interfaces in order to
remain upward compatible) and can enhance the
product this way for all users.

The same conclusions hold in case of weak or lack
of documentation: no "wait cycles" are needed until
the hot-line calls back, the source code is
immediately available.

In our case Oracle was asked for in advance whether
the Borland C++ compiler is supported. The answer
was yes. However, with the next update this support
disappeared because both vendors (Oracle and
Borland) could not solve a problem at the interface
between both COTS tools. Hence, all the software
written for the database application became
obsolete.

In our case we had a problem with Oracle for which
a problem occurred at the interface between Oracle
tools. We could not solve it due to lack of
information, and the vendor did not react within a
period acceptable for the project. We could solve
the problem when replacing an Oracle component
(database) by an equivalent component (Adabas)
due to standard interfaces.

Our conclusion for risk minimisation is: do not rely
on specific properties of a product (here the
interface provided by Oracle for the Borland
compiler), you will l oose a lot if the tool vendor
stops support. When two vendors are involved the
risk is twice as high, at least. Take a standard
solution instead. If not available look for such
solutions for which a standard exists. In our case we
moved over to a SQL interface by which our C
application communicates now with the Oracle
database. This interface we can even keep when we

Also, we detected a deadlock problem at high
system load related to SysV-IPC performance which
we could remove because we could change the
macro thanks to the flexibilit y of the ObjectGeode
code generator. This was rather easy to do and
helped us a lot.

- 4 -

BSSE System and Software Engineering

are replacing the Oracle database by Adabas which
frequently happens in our development
environment.

Both cases caused serious problems for the project
and the project could only survive due to Linux, an
OTS package, for which the needed feature was
either available or could be provided by our means.

5.Future evolution

3. A COTS PUZZLE: PRO'S FOR OTSSome applications may require support for
advanced features or features not commonly used on
a certain platform. Also in this case, the potential
advantage of clear responsibilit y in case of COTS
may turn out as a disadvantage if the vendor is not
willi ng (or ready) to provide the needed capabilit y,
even if he should be paid.

To further ill ustrate the problems which may occur when
COTS package are used instead of developing an
application from scratch we list a number of problems
we encountered in our project because the mixture of
COTS packages did not work together for a given
platform.

In our case we had a problem with a COTS package
for ISDN services. Only a specific Teles card was
supported for Solaris/x86, and not by SunSoft itself,
but by Teles drivers. It turned out that the goals of
the provided ISDN software were quite different
from our application and that we had to operate it in
a no-standard manner. When operated this way, the
package turned out as instable and we frequently got
a system crash.

In the given case we got following top-level
requirements for the product:

R1. PC platform

R1.a one computer

R2. multi-user capabilities

R3. capabilit y for technical evolution, open
interfaces

We did not get support to solve the problem. The
price for another specific development was too high
and we also would have had a schedule problem. On
the other side, we could not solve the problem
ourselves due to lack of information about the
COTS packages. The problem was immediately
solved when we moved to Linux later on because
there we had full view and could establish the
needed drivers to establish the feature we needed.

R4. capability for performance upgrade

e.g. to move from PC to workstation

R5. data base support

R6. graphical user interface

R7. fault-tolerance, capabilit y for continuous
operation

To meet the constraints of the budget we needed to
consider (C)OTS packages.

6.Validity of product information

We learned that wrong understanding of incomplete
information may cause serious problems. In case of
COTS the right understanding may even come after
delivery of the product.

Requirement R1.a seems to be clear a priori. However,
due to the empty intersection between the considered
COTS packages we seriously thought about a two-
computer-platform before we found the final solution.

Several times we recognised that the given
information about properties of a COTS product
was not like we understood it due to incomplete
information. So we could only get a clear view on a
product's properties when we received the package
or after we had installed it. Fortunately, this
happened early in the li fecycle and hence we could
react on the problems without loosing too much.
Provision of trial installation packages was also
helpful to detect such incompliances early enough.

Due to requirements R1 and R4 we defined the OS as
UNIX-based and selected Linux in a first iteration. This
closed R2 and R3 as well . R7 was closed by selecting
EaSySim II [10] with ObjectGEODE which provide a
template to build fault-tolerant systems and support
UNIX OS. To cover R5 we looked on the databases
available for Linux and decided for Adabas as a
commercial product (COTS) which was just provided
for Linux. We did not consider the available OTS
databases for Linux.

In one case (Oracle) the reason was that the
information about the product was not valid for all
platforms, but this was not explicitly said. So the
given information was "for all OS supporting
Motif", but the PC/x86 platform was excluded in
fact. This was recognised after software delivery
when we missed the expected package.

Now, to satisfy R6 we got a serious problem. It turned
out that the support given by all databases on a UNIX-
based platform is text-based, not graphics-based. Full
graphical support is only given for (MS) Windows
platforms. However, for good reasons (which were
confirmed by our experience in the project, see the
following chapter) we wanted to remain with a UNIX-
based OS. The solution to our problem seemed to be the
WABI tool which allows to run a (MS) Windows (3.1x)
application on top of a UNIX OS. This was true but we
needed some more iterations to succeed.

In another case (WABI delivered with Solaris/x86)
the user was only informed during installation about
the missing support for TCP/IP.

- 5 -

BSSE System and Software Engineering

Unfortunately (as seen from now) we moved from Linux
to Solaris/x86 in a second iteration for the following
reason: It turned out that the Adabas GUI was not
suff icient for our application. So we moved to Oracle
which provides a powerful GUI called PowerObjects.
Now, the next problem came up: Oracle is only
available for Solaris/x86 and SCO Unix, but not (at least
off icially) for Linux. So we decided to move from Linux
to Solaris/x86. And we ran into our next problem: The
Oracle GUI runs on Windows 3.1x/WABI, but the
Oracle database is not available for Windows 3.1x.
Consequently, we needed communication by TCP/IP
between the Oracle database running on Solaris/x86 and
the GUI running on WABI/Windows. Now, we ended
up with a deadlock: WABI for Solaris/x86 does not
provide such TCP/IP services, hence no communication
is possible between the database and the GUI.

In case of GNU native Sparc C compiler we recognised
some problems with finding syntactical bugs (we do not
know if an improvement has been made since last
summer). When moving from native Sparc as
development platform to PC x86 platform a number of
bugs was identified by GNU C x86 at compile and run-
time which were not detected by the native Sparc C
compiler.

In any case, careful evaluation is needed before a
decision is made for a certain (C)OTS package in order
to prevent against risks as much as possible. And this
remains the responsibility of a user.

5. HOW RISKS MAY BE MASTERED

Above discussions showed that in the cases discussed
above OTS is superior to COTS. However, the reader
should not get the impression that this is a strict
recommendation for OTS. What we learned is that OTS
gives higher flexibilit y to react on problems when the
application is a non-standard one. Then OTS comes
close to own software development. The only open point
is the quality.

We needed another iteration which brought us back to
Linux for good reasons: for Linux support was available
for a database (Adabas) and for TCP/IP communication
between the UNIX and WABI/Windows 3.1x.

Finally, we got the following solution: we took Linux
and Adabas, introduced WABI for Linux from Caldera
[11] which supports TCP/IP and remained with
Oracle/PowerObjects as GUI. This turned out as feasible
and stable solution.

This possible disadvantage may be compensated by the
fact that (in most cases) a rather large community is
using a software package which allows to achieve a
rather good stabilit y and reliabilit y. So far, Linux as
OTS did not crash, while COTS packages crashed: in a
few cases Solaris/x86 for the ISDN add-on,
WindowsNT for whatever reasons, and Windows95
frequently and seriously due to lack of proper protection
mechanisms. Moreover, the openness of Linux helped us
to solve a number of specific problems introduced by
COTS packages. On the other side we were somewhat
disappointed by the GNU native Sparc C compiler.

By this solution we also got rid of the two other
problems which occurred at the interface between the
Oracle components "database" (DB), the "Data Base
Designer" (DBD) and "PowerObjects" GUI: both Oracle
applications (DBD and PowerObjects) worked properly
with Adabas, while they did not interface correctly with
their own data base tool. It seems that this is (possibly
was) a problem of the Oracle ODBC drivers.

4. STABILITY OF (C)OTS PRODUCTS According to above experience we recommend COTS to
cover standard features which do not need specific
modifications or extensions, or integration with other
COTS products. For non-standard applications OTS,
suff iciently open COTS or own software may be more
appropriate. When using COTS packages standardised
interfaces should be introduced (e.g. SQL in our case) to
achieve suff icient stabilit y and independence from
suppliers. This surely will be helpful for OTS packages
as well.

Due to its openness and stable multi -user capabiliti es we
preferred a UNIX-based system right from the beginning
and we did not change our mind when we got the
problem with the GUI's which are only available for
(MS) Windows platforms.

During the project we temporarily used a Windows95
platform because another project required Windows95.
When we got crashes by our (C) database software
which was under development, serious damage of the
disk occurred due to lack of proper Windows95
protection mechanisms. The crashing program corrupted
the disk seriously and we needed to re-install the OS and
to repair the disk several times.

What helped us to survive in this confusing puzzle of
COTS and OTS packages and their guaranteed or virtual
properties was

1.an architecture which introduced clear interfaces
between the different pieces coming from different
sources,Then we decided to leave the Windows95 platform. We

moved to Windows NT 4.0, and the number of crashes
was reduced and no further corruption of the disk was
observed. However, we still needed to reboot the system
several times for reasons we still do not know.

and

2. early risk reduction by execution of prototypes
already including the (C)OTS packages.

This shows that COTS (in this case MSWindows) is not
necessarily more reliable than OTS (in this case Linux).
For Linux we did not observe any crash.

The SQL interface allowed us to combine own software
and components from different vendors ending up with a
more stable solution compared with the case taking all
the (C)OTS components from one vendor only and

- 6 -

BSSE System and Software Engineering

using internally non-standard interfaces: we replaced the
specific Borland C++ / Oracle interface by a SQL
interface and we got rid of the constraints imposed by
the two tool vendors. Such standards will surely keep
the system stable in future (at least this is our hope),
even if a vendor will change properties of his product.

delay of two months occured because we needed time to
test and to identify a number of potential solutions.

We think that with increasing experience how to
integrate (C)OTS and to minimise the risks, use of
(C)OTS becomes more and more eff icient. This will
help us to make more progress in system and software
development: to deliver within the schedule at
acceptable costs. So we will again try it with (C)OTS
packages.

Concerning (2) we could only identify the risks imposed
by (C)OTS products and solve them with minimum
costs because we were able to execute our own software
rather early with the (C)OTS packages, and could do
stress testing already in an early development phase. So
we could identify the SysV-IPC performance problem
already at the beginning and could solve it.

7. REFERENCES

[1] Solaris/x86 2.5.1
SunSoft Inc. 2550 Garcia Avenue, Mountain
View, CA 94043, USAThis experience leads to the specific conclusion that use

of (C)OTS packages require a li fe cycle which takes
care of the specific conditions of (C)OTS integration.
Surely, the "waterfall model" [12] cannot be applied,
because this would not allow early risk identification.
The approach proposed by EaSyVaDe [13] for early
system validation turned out to be very helpful because
integration and stress tests could be done suff iciently
early.

[2] Oracle Database Software V7.3.2,
Oracle Corporation, 500 Oracle Parkway,
Redwood Shores, CA 94065, USA

[3] For download of Linux software see e.g.
http://www.linux.org or
http://sunsite.unc.edu/pub/Linux/kernel/linux

[4] Adabas,

Finally, our application is rather stable now and is not
compromised by the used (C)OTS packages.

Software AG, Uhlandstraße 12, D-64297
Darmstadt

[5] Borland C++6. CONCLUSIONS
[6] For download of GNU tools see e.g. host

ftp.quintus.com, directory /pub/GNU
A new aspect arises when a number of (C)OTS
components are used: problems occur when more than
one (C)OTS package shall be integrated. This requires
specific care and early identification of risks. In case of
own software development such problems do not occur
because the interfaces can be harmonised, while in case
of external software serious constraints may be imposed.

[7] Teles S0/16 Adapter + Solaris/x86-Driver
Teles AG, Dovestraße 2-4, D-10587 Berlin

[8] ObjectGEODE SDL-Tool, Verilog, 150 rue
Vauquelin, F-31081 Toulouse Cedex, France

[9] HP Vectra VL 5Consequently, when needing more than one (C)OTS
product the real challenge of (C)OTS begins because the
intersection of all selected (C)OTS components may
turn out as empty at the end. Obviously, this is a new
aspect which we have to take care of to succeed.

Hewlett-Packard France, Coomercial Desktop
Computing Division, F-38053 Grenoble Cedex 9,
France

[10] EaSySim II environment, Rainer Gerlich BSSE,
Auf dem Ruhbuehl 181, D-88090 Immenstaad,
Germany

Although a lot of problems occurred in our project when
using COTS and OTS, it is our (strong) feeling that we
only could finish within the accepted schedule and given
budget because we used (C)OTS. Especially the OTS
helped us to solve a number of serious problems raised
by COTS packages. We also think that even the
problems described above would not justify a complete
development from scratch: it is more eff icient to use
(C)OTS and to learn how to master the related problems
than to develop already existing software from scratch
again.

[11] User's Guide Wabi V 2.2 for OpenLinux, Caldera
Part No: 200-WBMN-001 8/96
Caldera, 633 South 550 East, Provo, Utah 84606,
USA

[12] Barry Boehm, "Software engineering" IEEE
Transactions on Computers C-25, 12 (December
1976) 1226-1241.

[13a] R.Gerlich, V.Debus, Ch.Schaffer, Y.Tanurhan:
EaSyVaDe: Early Validation of System Design
by Behavioural Simulation, ESTEC 3rd
Workshop on "Simulators for European Space
Programmes" Noordwijk, November 15-17, 1994

The iterations we needed to do due to use of (C)OTS
packages added an overhead on our schedule. This has
to be considered for future exercises, especially the
impact on the schedule. Probably, selection and
integration of (C)OTS packages will drive the critical
path of a project, at least for a short-term schedule. Due
to early risk identification we were ready to deliver after
nine months compared with seven months planned. The

[13b] OMBSIM (On-Board Mangement System
Behavioural Simulation), ESTEC contract no.
10430/93/NL/FM(SC), Final Report Nov. 1995,
Noordwijk, The Netherlands

[14] For more information see http://java.sun.com

- 7 -

