LessonsLearned by Useof (C)OTS

'DASIA 98'
- Data Systems in Aerospace -
Athens, Greece

May 25 - 28, 1998

Rainer Gerlich

BSSE System and Software Engineering

Auf dem Ruhbuehl 181
D-88090 Immenstaad

Phone: +49/7545/91.12.58
Mobile: +49/171/80.20.659
Fax: +49/7545/91.12.40
e-mail: gerlich@t-online.de
www: http://home.t-online.de/home/gerlich/

BSSE System and Software Engineering

BSSE System and Software Engineering

Lessons Learned by Use of (C)OTS

Rainer Gerlich
BSSE System and Software Engineering

Auf dem Ruhbuehl 181
D-88090 Immenstaad, Germany

Phone +49/7545/91.12.58

Mobile: +49/171/80.20.659 Fax +49/7545/91.12.40

e-mail: gerlich@t-online.devww: http://home.t-online.de/home/gerlich/

Abstract: Software reuse and Commercial Off-the-Shelf
Software (COTYS) is considered as a means to reduce
software development costs and time. However, this
does not come for free Each such product may have its
own lifegycle during which its properties may be
changed. Also, a full view on the mde may not be
posdsble. In case of problems a user may need the
suppart of the vendor - before the projed finishes. Such
drawbacks beomme een more important when
developing hghly reliable, fault-tolerant systems. This
paper discusses pro's and con's and lists a number of
problems and gives siggestions how to proted against
such impads. It also compares COTS with non-
commercial Off-the-Shelf Software (cdled OTS here).
For the reference projed Linux as OTS turned out as
rather stable and suitable for a commercial, fault-tolerant
system while some COTS products caused some
crashes. By introduction of clea interfaces and use of
standards the project could survive.

Keywords: Commercial Off-the-Shelf ~ Software
(COTY), reliability, cost aspeds, software development
lifecycle, Linux

1. INTRODUCTION

During DASIA'97 a panel discusdon about "Cost
aspeds of the use of commercial off-the-shelf software"
(COTS) was held during which pro's and con's were
discussed in view of reliable system applications. One
pasition is that only software which has been built
acording to well-known (high quality) standards is
accetable for agospace ad similar applications. The
other paostion is that (C)OTS software may be
accetable if procurement, test and accetance
procedures are properly defined and appropriate
components can be found on the market.

This paper discuses more problems and solutions
related to use of COTS and (non-commercia) OTS
based on recett experience in a projed. Espedaly, it
identifies a number of organisational problems which
have to be mnsidered beside the principal problem of
reliability and quality. Differences between COTS and

OTSon one side and between (C)OTS and development
from scratch on the other side ae outlined from this
organisational point of view.

It may be expeded that by use of (C)OTS devel opment
costs and time can be saved. However, this saving hes to
be @mpared with incressed procurement, test and
acceptance dfort and posshly with additional
development effort needed to seled, adapt or to
integrate the (C)OTS software to specific user needs.

In any case, we have to look for sufficiently reliable
(C)OTS packages either acwording to arealy available
knowledge or by an evaluation exercise. We dso have to
take into acount the mid-term and longterm
availahility of (C)OTS padkages and we need to make
our architedure robust against potential changes by
suppliers.

So it has to be aalysed carefully whether use of
(C)OTSwill beredly helpful in pradice and what hasto
be done to succeed.

2. ANALYSIS OF PRO'S AND CON'S

COTS means "Commercial Off-The-Shelf Software"
and covers commonly used software padkages like
operating systems (OS), databases (DB), graphicad user
interfaces (GUI) etc. For such areas non-commercial
software (OTS) is also available, for which Linuxis an
example. In the following, "OTS' means "fredy
avail able" software of which sources are avail able. For
such public domain software of which sources are not
provided similar conclusions are valid as for COTS.

2.1 An Example Project

During a receit commercial projed¢ COTS and OTS
padkages sich as OS, DB and GUI were used. The
projed required fault-tolerance in order to ensure
continuous operation all over the day becaise the system
colleds data which are needed for charging of services.
Hence, lossof data means lossof money, and this is the
basic motivation to achieve the needed degree of fault
tolerance. So compared to aeospace or air traffic

1 The bradkets aroundthe "C" shall indicate that also fredy available, na only commercial software will be

addressed.

control systems the misdon-criticd or safety-criticd
aspects are not relevant.

The short-term development schedule (seven months
planned) and the restricted budget lead to the dedsion to
use (C)OTS packages for the projed. In fad, there was
no ather choice And at the end, the projea could be
completed succesgully and we had leaned a lot which
will lower the risk for future exercises with (C)OTS.

Due to the required fault tolerance the system
architedure is nealy identicd with fault-tolerant
agospace systems. two hot-redundant sets of
components (processor and communicaion lines) with
crosscoupled data channels and channels for status
exchange, the cgability to reconfigure dter loss of a
chain and to take the repaired chain into operation
without any need to stop the mmplete system. However,
the most significant difference to agospace software
was the need to seled commercia hardware ad as
much (C)OTS as possble. The following components
have been taken into acount: a PC platform, TCP/IP,
ISDN, RS232 and SysV-IPC as communicaion media,
and the COTS/OTS padkages Solaris/x86 [1], Linux[2],
Orade [3], Adabas [4], Borland C++ [5], GNU tods
(including C compiler) [6], Teles ISDN drivers for
Intelx86 [7], ObjectGEODE [8].

22 (C)OTSvs. Project Specific Software
Development

One agument against use of (C)OTS is that it may not
be sufficiently tested and hence will imply a risk for
later operation. However, this conclusion may not be
completely right. Software development from scratch
may il include bugs due to insufficient number of
tests, even if development standards and test and
acceptance procedures exist. The full insight view on the
software may not prevent existence of bugs when the
software has passed the acceptance procedure.

On the other side, (C)OTS which is commonly used may
have drealy been subjed of avariety of tests applied by
different users. Therefore, the number of remaining bugs
in such software may be lower than the crresponding
number of software developed in acordance with high

quality standards, but tested only by one user or project.

In case of COTS the supplier defines properties of his
product on which a user may rely on, at least there exists
a ontradual relationship which gves a user rightsto get
a product which is compliant with the product
description. This is different for OTS.

The question may be raised now whether an "OTS'
padkage like Linux for which nobody feds diredly
responsible may be gpropriate for a projed requiring a
certain level of reliability. The spedfic answer in this
ceseis: Linuxas OTSturned out to be more stable (from
an overall perspedive) than the euivalent COTS
software padkage Solarig/’x86 a MS-Windows. And, it
alowed a feasible solution (probably the only one) at
the end in a puzde of COTS components. the high
variety of suppat given by the large Linux community

BSSE System and Software Engineering

and the openness of Linux lead to a higher number of
potential solutions.

More generaly: if sufficiently reliable less
organisational problems will occur for an OTS padkage
compared with COTS. From this view point an OTS
package is smilar to own software: like for own
software sources are available and a user does not
depend on a supplier and his policy. This becomes even
more important when products from different suppliers
have to be integrated.

In case of Solaris/x86 and Orade both vendors foll owed
own company spedfic pdlicies: SUN is pushing Java
[14] and gives wedk suppat for (MS) Windows, while
Orade is pushing (MS) Windows and daes (currently)
not suppat an integrated link between Java and a
database.

To summarise: apart from reliability and stability
considerations an OTS padkage may be the better choice
when going to replace own software development by
(C)OTS padkages. COTS padkages may impase serious
constraints on a projed, and hence may not be helpful
for the project, at all.

Findly, if (C)OTS s used more organisational problems
may have to be solved than in case of projed spedfic
development from scratch. However, by adequate means
such problems can be mastered if a projed intending to
integrate several (C)OTS padages neeals another
development approach and management procedures than
a pure project specific development from scratch.

The pro's and con's are discussed in more detail in the
next section.

23 COTSvs OTS

Major cornerstones on the way to a final dedsion
towards COTS or OTS are: responsbility for the
padkage, openness of the pacdkage, flexibility of the
supplier, saving of investments, future evolution,
validity of product information.

The discusson below will show that from an
organisational and management point of view more
positive aguments for OTS are found. What is
considered as a positive agument for COTS, may turn
out as a problem when a COTS pacdkage is integrated
into a more complex environment.

1.Responsibility

In case of COTS there is a cmmmercial partner
which takes over (at least some) responsibility for a
product's properties and maintenance This is
(usually) not true for OTS, e.g. in case of Linux o
official responsible exists who will respond if a
problem occurs. There is a @mmunity which may
provide ar answer, but there is no contradual
relationship to somebody.

However, the potential advantage of having clea
responsibiliti es may beame aserious disadvantage.
E.g. when a problem occurs at the interfacebetween

two COTS padkages it may happen that vendor 1
says it is a problem of padkage 2, and vendor 2
refuses to take cae of the problem becaise he
thinksit is a problem of padkage 1. Thiswill cause a
deadlock for the user. In case one of the padkagesis
of type OTS a user can (may) remove the deadlock
by changing the sources (preferably in an upward
compatible manner).

Such experience we made for Orade/Borland C++
and Orade/Solaris’x86 (and aso for the HP
hardware platform and Solaris’x86). Orade dropped
suppart for Borland C++ by a later version becaise
problems at the interface ould not be solved.
Solaris/x86 dd not provide the suppat we needed
for the Oracle GUI.

Misdng responsibility in case of OTS may cause
that COTS vendors do not to suppat OTS
padkages. So there may be aproblem to integrate an
OTS padkage with a COTS padkage in order to
complement the functionalities. This occurred for
Oracle/Linux.

2.0penness of a software package

Openness of a software padkage may be needed to
adapt existing software to user spedfic neals or to
identify and/or to remove a bug. Openness of a
COTS package brings it closer to OTS and own

software and hence lowers the risks for the project.

If a supplier is flexible enough (see point 3 below)
and feds responsible like auser expeds, openness
may not be required becaise then the neealed
modifications will be made by the supplier.
However, then more money may be needed to pay
for the modification.

In such a cae OTS has a mgjor advantage becaise
everybody can modify / extend the eisting software
(preferably by well-defined interfaces in order to
remain upward compatible) and can enhance the
product this way for all users.

The same onclusions hold in case of wek or lak
of documentation: no "wait cycles' are needed urtil
the hot-line cdls badk, the source ®de is
immediately available.

In our case we had a problem with Orade for which
a problem occurred at the interface between Orade
toos. We ould not solve it due to ladk of
information, and the vendor did not read¢ within a
period acceptable for the projed. We ould solve
the problem when repladng an Orade component
(database) by an equivalent component (Adabas)
due to standard interfaces.

Also, we deteded a deallock problem at high
system load related to SysV-1PC performance which
we ould remove becaise we ould change the
maao thanks to the flexibility of the ObjeaGeode
code generator. This was rather easy to do and
helped us a lot.

BSSE System and Software Engineering

So openness of a COTS padkage will help to
succeal as it minimises the risks of its usage in case
a user wants to apply the padkage in "non-standard"
manner, but still moving within the supplier's
envelope. Such "non-standard" usage may already
occur when a COTS padkage is integrated with
another one.

3.Flexibility of the supplier

In case of a "non-standard" application a problem
with a (C)OTS padage may be solved if the
supplier is willing to provide a solution within a
reasonable time. When a responsible rejeds to read
the supposed advantage of having clea
responsibilities becomes a major disadvantage.

In case of OTS either a user can help himself or he
may get support from a large community.

The leson we leaned relates to a hardware-COTS
interface For the HP-PC platform [9] we got a
problem with the graphics chip set. Althoughthe S3
chip set appeaed in the hardware compatibility list
of Solaris/x86, it did not work for the HP-PC. The
response from SUN was. yes the S3 is supparted,
but this HP model does not appea in the list, and
we do not guarantee that our drivers will work
corredly and therefore we do not give further
suppat. The position of HP was: we déelivered this
model with Windows95 and there it works. We
don't care about Solaris/x86.

The problem was lved at short-hand by buying an
additional graphics adapter and later on by moving
to Linux.

4.Saving of investments

It may happen that a cetain feaure disappeas with
the next update. This may cause serious problems
for a user, if he gplied the dropped feaure and an
equivalent feaure is not provided. In case of OTS
he still can accessthe relevant sources and may add
them to the updated version.

In our case Orade was asked for in advance whether
the Borland C++ compiler is supparted. The answer
was yes. However, with the next update this suppart
disappeaed becaise both vendors (Orade ad
Borland) could not solve aproblem at the interface
between both COTS todls. Hence, all the software
written for the database gplicaion becane
obsolete.

Our conclusion for risk minimisation is: do not rely
on spedfic properties of a product (here the
interface provided by Orade for the Borland
compiler), you will 1oase alot if the tod vendor
stops suppat. When two vendors are involved the
risk is twice & high, at leest. Take a standard
solution instead. If not available look for such
solutions for which a standard exists. In our case we
moved over to a SQL interface by which our C
application communicaes now with the Orade
database. This interfacewe can even kegp when we

are repladng the Orade database by Adabas which
frequently happens in our development
environment.

5.Future evolution

Some @plications may require suppat for
advanced feaures or feaures not commonly used on
a cetain platform. Also in this case, the potential
advantage of clea responsibility in case of COTS
may turn out as a disadvantage if the vendor is not
willi ng (or realy) to provide the needed cgpability,
even if he should be paid.

In our case we had a problem with a COTS padkage
for ISDN services. Only a spedfic Teles card was
supparted for Solaris/x86, and not by SunSoft itself,
but by Teles drivers. It turned out that the goals of
the provided ISDN software were quite different
from our application and that we had to operateit in
a no-standard manner. When operated this way, the
padkage turned out asinstable and we frequently got
a system crash.

We did not get suppat to solve the problem. The
pricefor another spedfic development was too high
and we dso would have had a schedule problem. On
the other side, we @uld not solve the problem
ourselves due to lack of information about the
COTS padkages. The problem was immediately
solved when we moved to Linux later on because
there we had full view and could establish the
needed drivers to establish the feature we needed.

6.Validity of product information

We learned that wrong urderstanding of incomplete
information may cause serious problems. In case of
COTS the right understanding may even come dter
delivery of the product.

Several times we reoognised that the given
information about properties of a COTS product
was not like we understood it due to incomplete
information. So we could only get a dea view on a
product's properties when we receved the padage
or after we had installed it. Fortunately, this
happened ealy in the lifecycle and hence we wuld
rea¢ on the problems without loosing too much.
Provision of trial installation padages was aso
helpful to detect such incompliances early enough.

In one cae (Orade) the reasson was that the
information about the product was not valid for all
platforms, but this was not explicitly said. So the
given information was "for all OS suppating
Motif", but the PC/x86 datform was excluded in
fad. This was recognised after software delivery
when we missed the expected package.

In another case (WABI delivered with Solaris/x86)
the user was only informed during install ation about
the missing support for TCP/IP.

BSSE System and Software Engineering

Both cases caused serious problems for the projed
and the projed could only survive due to Linux, an
OTS padkage, for which the neealed feaure was

either available or could be provided by our means.

3. A COTS PUZZLE: PRO'S FOR OTS

To further ill ustrate the problems which may occur when
COTS padkage ae used insteal of developing an
applicaion from scratch we list a number of problems
we encountered in our projed becaise the mixture of
COTS padkages did not work together for a given
platform.

In the given case we got following top-level
requirements for the product:
R1. PC platform
Rl.a one computer
R2. multi-user capabilities
R3. cgoability for technicd evolution, open
interfaces
RA4. capability for performance upgrade
e.g. to move from PC to workstation
R5. data base support
R6. graphical user interface
R7. fault-tolerance, cgpability for continuous

operation

To med the oonstraints of the budget we needed to
consider (C)OTS packages.

Requirement R1.a seans to be dea a priori. However,
due to the empty intersedion between the mnsidered
COTS padages we seriously thought about a two-
computer-platform before we found the final solution.

Due to requirements R1 and R4 we defined the OS as
UNIX-based and seleded Linuxin afirst iteration. This
closed R2 and R3 as well. R7 was closed by seleding
EaSySim Il [10] with ObjedGEODE which provide a
template to huild fault-tolerant systems and suppart
UNIX OS. To cover R5 we looked on the databases
available for Linux and dedded for Adabas as a
commercia product (COTS) which was just provided
for Linux We did not consider the available OTS
databases for Linux.

Now, to satisfy R6 we got a serious problem. It turned
out that the suppart given by all databases on a UNIX-
based platform is text-based, not graphics-based. Full
graphicd suppat is only given for (MS) Windows
platforms. However, for good reasons (which were
confirmed by our experience in the projed, see the
following chapter) we wanted to remain with a UNIX-
based OS. The solution to our problem seamed to be the
WABI tod which allowsto runa (MS) Windows (3.1x)
application on top d a UNIX OS. This was true but we
needed some more iterations to succeed.

Unfortunately (as sen from now) we moved from Linux
to Solaris/x86 in a seoond iteration for the following
resson: It turned out that the Adabas GUI was not
sufficient for our application. So we moved to Orade
which provides a powerful GUI cdled PowerObjeds.
Now, the next problem came up: Orade is only
avail able for Solarig’x86 and SCO Unix, but not (at least
officially) for Linux. So we dedded to move from Linux
to Solaris/x86. And we ran into our next problem: The
Orade GUI runs on Windows 3.1x/WABI, but the
Orade database is not available for Windows 3.1x.
Consequently, we needed communicaion by TCP/IP
between the Orade database runring on Solaris/x86 and
the GUI runrning on WABI/Windows. Now, we ended
up with a deadlock: WABI for Solaris/x86 daes not
provide such TCP/IP services, hence no communicaion
is possible between the database and the GUI.

We nealed another iteration which brought us bad to
Linux for good reasons: for Linux suppart was avail able
for a database (Adabas) and for TCP/IP communicétion
between the UNIX and WABI/Windows 3.1x.

Finaly, we got the following solution: we took Linux
and Adabas, introduced WABI for Linux from Caldera
[11] which suppats TCP/IP and remained with
Orade/PowerObjeds as GUI. Thisturned out asfeasible
and stable solution.

By this olution we dso got rid o the two other
problems which occurred at the interface between the
Orade mponents "database" (DB), the "Data Base
Designer" (DBD) and "PowerObjeds’ GUI: both Orade
applications (DBD and PowerObjeds) worked properly
with Adabas, while they did not interface orredly with
their own data base todl. It seams that this is (possbly
was) a problem of the Oracle ODBC drivers.

4, STABILITY OF (C)OTSPRODUCTS

Due to its opennessand stable multi-user capabiliti es we
preferred a UNIX-based system right from the beginning
and we did not change our mind when we got the
problem with the GUI's which are only available for
(MS) Windows platforms.

During the projed we temporarily used a Windows95
platform becaise another projed required Windows95.
When we got crashes by our (C) database software
which was under development, serious damage of the
disk occurred due to ladk of proper Windows95
protedion medanisms. The aashing program corrupted
the disk seriously and we needed to re-install the OS and
to repair the disk several times.

Then we dedded to leare the Windows95 datform. We
moved to Windows NT 4.0, and the number of crashes
was reduced and no further corruption of the disk was
ohserved. However, we gtill needed to reboa the system
several times for reasons we still do not know.

This dows that COTS (in this case MSWindows) is not
necessarily more reliable than OTS (in this case Linux).
For Linux we did not observe any crash.

BSSE System and Software Engineering

In case of GNU native Sparc C compiler we recognised
some problems with finding syntadicd bugs (we do not
know if an improvement has been made since last
summer). When moving from native Sparc &
development platform to PC x86 fatform a number of
bugs was identified by GNU C x86 at compile and run-
time which were not deteded by the native Sparc C
compiler.

In any cese, caeful evauation is nealed before a
dedsion is made for a cetain (C)OTS padkage in order
to prevent against risks as much as possble. And this
remains the responsibility of a user.

5. HOW RISKSMAY BE MASTERED

Above discussons sowed that in the caes discussed
above OTS is superior to COTS. However, the reader
should not get the impresson that this is a strict
recommendation for OTS. What we leaned is that OTS
gives higher flexibility to rea¢ on problems when the
applicaion is a non-standard one. Then OTS comes
close to own software development. The only open point
is the quality.

This posdble disadvantage may be compensated by the
fad that (in most cases) a rather large community is
using a software padkage which alows to adieve a
rather good stability and reliability. So far, Linux as
OTS did not crash, while COTS padkages crashed: in a
few cases Solaris/x86 for the ISDN add-on,
WindowsNT for whatever reasons, and Windows95
frequently and serioudly due to ladk of proper protedion
medanisms. Moreover, the opennessof Linux helped us
to solve anumber of spedfic problems introduced by
COTS packages. On the other side we were somewhat
disappointed by the GNU native Sparc C compiler.

Accordingto above experience we recommend COTS to
cover standard fedures which do not need spedfic
modificaions or extensions, or integration with other
COTS products. For non-standard applicaions OTS,
sufficiently open COTS or own software may be more
appropriate. When wsing COTS padkages gandardised
interfaces gould beintroduced (e.g. SQL in our case) to
achieve sufficient stability and independence from
suppliers. This surely will be helpful for OTS padages
as well.

What helped us to survive in this confusing puzze of
COTS and OTS padkages and their guaranteed or virtual
properties was

1.an architedure which introduced clea interfaces
between the different pieces coming from different
sources,

and

2. ealy risk reduction by exeaution of prototypes
already including the (C)OTS packages.

The SQL interface # owed us to combine own software
and components from diff erent vendors ending yp with a
more stable solution compared with the cae taking all
the (C)OTS components from one vendor only and

using internally non-standard interfaces: we replaced the
spedfic Borland C++ / Orade interface by a SQL
interface &d we got rid o the cnstraints impaosed by
the two todl vendors. Such standards will surely keep
the system stable in future (at least this is our hope),
even if a vendor will change properties of his product.

Concerning (2) we could only identify the risks imposed
by (C)OTS products and solve them with minimum
costs becaise we were able to exeaute our own software
rather ealy with the (C)OTS padkages, and could do
stresstesting arealy in an ealy development phase. So
we ould identify the SysV-IPC performance problem
already at the beginning and could solve it.

This experience leals to the spedfic conclusion that use
of (C)OTS padkages require alife gcle which takes
care of the spedfic conditions of (C)OTS integration.
Surely, the "waterfall model" [12] cannot be gplied,
becaise this would not allow ealy risk identification.
The gproach proposed by EaSyVaDe [13] for ealy
system validation turned out to be very helpful becaise
integration and stress tests could be done sufficiently
early.

Finaly, our applicétion is rather stable now and is not
compromised by the used (C)OTS packages.

6. CONCLUSIONS

A new asped arises when a number of (C)OTS
components are used: problems occur when more than
one (C)OTS padkage shall be integrated. This requires
spedfic cae and ealy identificaion of risks. In case of
own software development such problems do not occur
becaise the interfaces can be harmonised, while in case

of external software serious constraints may be imposed.

Consequently, when needing more than one (C)OTS
product the red challenge of (C)OTS begins because the
intersedion of al seleded (C)OTS components may
turn out as empty at the end. Obvioudly, this is a new
aspect which we have to take care of to succeed.

Althoughalot of problems occurred in our projed when
using COTS and OTS, it is our (strong) feding that we
only could finish within the acceted schedule and given
budget becaise we used (C)OTS. Espedally the OTS
helped us to solve anumber of serious problems raised
by COTS padages. We dso think that even the
problems described above would not justify a cmplete
development from scratch: it is more dficient to use
(C)OTS and to lean how to master the related problems
than to develop already existing software from scratch
again.

The iterations we nealed to do die to use of (C)OTS
padkages added an overhead on our schedule. This has
to be onsidered for future exercises, espedally the
impad on the schedule. Probably, seledion and
integration of (C)OTS padkages will drive the aiticd
path of a projed, at least for a short-term schedule. Due
to ealy risk identification we were realy to deliver after
nine months compared with seven months planned. The

BSSE System and Software Engineering

delay of two months occured because we nealed time to
test and to identify a number of potential solutions.

We think that with increasing experience how to
integrate (C)OTS and to minimise the risks, use of
(C)OTS bemmes more and more dficient. This will
help us to make more progressin system and software
development: to deliver within the schedule &
accetable wsts. So we will again try it with (C)OTS
packages.

7. REFERENCES

[1] Solaris/x86 2.5.1
SunSoft Inc. 2550 Garcia Avenue, Mountain
View, CA 94043, USA

Oracle Database Software V7.3.2,
Orade Corporation, 500 Orade Parkway,
Redwood Shores, CA 94065, USA

For download of Linux software see e.qg.
http://Amww.linux.org or
http://sunsite.unc.edu/pub/Linux/kernel/linux

Adabas,
Software AG, UhlandstralBe 12, D-64297
Darmstadt

(2]

(3]

(4]

Borland C++

For download of GNU tods e eg. host
ftp.quintus.com, directory /pub/GNU

Teles S0/16 Adapter + Solaris/x86-Driver
Teles AG, DovestralRe 2-4, D-10587 Berlin

ObjedGEODE SDL-Tod, Verilog, 150 rue
Vaugquelin, F-31081 Toulouse Cedex, France

HP Vectra VL 5

Hewlett-Padkard France, Coomercial Desktop
Computing Division, F-38053Grenoble Cedex 9,
France

EaSySim Il environment, Rainer Gerlich BSSE,
Auf dem Ruhbuehl 181, D-88090 Immenstaad,
Germany

User's Guide Wabi V 2.2 for OpenLinux, Caldera
Part No: 200-WBMN-001 8/96

Caldera, 633 South 550 East, Provo, Utah 84606
USA

(5]
(6]

[7]

(8]

9]

(10

(11

[12] Barry Boehm, "Software engineaing' |EEE
Transadions on Computers C-25, 12 (Deceamber

1976) 1226-1241.

R.Gerlich, V.Debus, Ch.Schaffer, Y.Tanurhan:
EaSyVaDe: Early Vadidation of System Design
by Behavioura Simulation, ESTEC 3rd
Workshop an "Simulators for European Space

(134

Programmes" Noordwijk, November 15-17, 1994

[13n OMBSIM (On-Board Mangement System
Behavioural Simulation), ESTEC contrad no.
1043093/NL/FM(SC), Fina Report Nov. 1995

Noordwijk, The Netherlands

[14] For more information see http://java.sun.com

