
Model Transformation in Practice

Ralf Gerlich, Daniel Sigg, Rainer Gerlich

 BSSE System and Software Engineering, Auf dem Ruhbuehl 181,
88090 Immenstaad, Germany, Phone +49/7545/91.12.58, Mobile +49/171/80.20.659,

Fax +49/7545/91.12.40, e-mail:Ralf.Gerlich@bsse.biz, Rainer.Gerlich@bsse.biz, Daniel.Sigg@bsse.biz,
URL: http://www.bsse.biz

ABSTRACT:
The intention of this paper is to highlight the benefits of
model exchange between different tools, methods and
notations on one side, and to identify issues of proper
modelling on the other side which have been detected
during model transformation and code generation from
models.

Firstly, model transformation is applied to achieve
diversification of tools, i.e. to enable the use of different
tools on the same model. Equivalent models are derived
from one original model and the output from at least two
tools is compared. This increases the chance of detecting
a fault which one of the tools did not flag during
verification or may have introduced during code
generation. Secondly, verification and validation of
models and the generated code do benefit from different,
complementary tool capabilities. A tool may only
support a certain set of verification and code generation
issues, while other ones may support the missing ones.

The following model notations were considered: UML2
[1], 3ADL [2] and ISGL [3]. Transformations were
established from UML2 and 3ADL to ISGL.

For the models received in one of the notations UML2
or 3ADL, the contents was checked on feasibility of
automated code generation when transforming to ISGL
regarding a fully deterministic and automated
transformation into executable code. A number of issues
were identified which compromise or prevent
unambiguous code generation from UML2 and 3ADL
models.

The benefits of diversification were confirmed by the
performed activities. Due to the automated transition to
another tool more faults could be identified. In addition,
it could be proven that modelling faults can be identified
on the level of the generated code due to auto-coding.
This allows to check and evaluate modelling properties
in the execution environment under real conditions
rather than in an isolated modelling environment where
real conditions are replaced by assumptions and
hypotheses.

1 INTRODUCTION
Models raise the level of abstraction of software
development towards the application, thereby allowing
to express properties in an adequate manner without
being enforced to think about implementation details.
Today, a variety of modelling languages and supporting
tools exist which target different issues of modelling and
verification and validation of a model.

Therefore, it should be interesting to compare tools and
exploit their capabilities. Though it can be assumed that
every tool vendor does his very best on the quality of a
tool, from a rigorous point of view it must be doubted
that the outcome of verification, validation and code
generation is always fully correct.

As the location of a fault not detected during verification
or introduced by code generation is not known, an
efficient way to identify such faults is to compare the
results from different tools, provided that they are really
independent.

When transforming one notation into another one, both
notations are compared. From a principal point of view,
a transformation is only possible, when the intersection
of both notations is not empty. Moreover, only such
parts of a model can be transformed which belong to the
intersection. Otherwise, an assumption has to be made to
substitute required, but missing information, which
however may compromise the validity of the model.

In practice, it turned out that more modelling elements
were outside the intersection than expected. This even
appeared in cases where the modelling elements were
considered as equivalent.

In particular, the transformation of a model into source
and executable code enforces resolving of implicit
assumptions and ambiguities. It was recognised that
after code generation from a model the behaviour of the
generated code may differ among different tools,
depending on the tool used and the assumptions
implicitly used in the tool to resolve ambiguities and to
substitute missing information.

mailto:Rainer.Gerlich@bsse.biz

From a verification and validation (V&V) point of view
the properties of the generated code are the essential
ones, and these may not comply with what is expected
when defining a model and verifying it at modelling
level. To ensure compliance with the generated code, all
desired properties of the final product need to be defined
in a model based on the used notation. However, this
important requirement is not fulfilled in most cases.

This leads to the following conclusions: when the
desired property can be observed on the (automatically)
generated code, the code is acceptable w.r.t to the
desired property. If a desired property cannot be
observed, it has to be checked whether this corresponds
to a fault in the model – implying unsuccessful V&V at
modelling level, or in the code generation process.

In case of a transformation from UML2 it could be
proven, that the faults were present in the model when
observing faults in the generated code. The reason
simply is that the tool by which the model was
established does not allow identification of such faults.
This clearly identifies the benefit of tool diversification.

A further conclusion is: the success of V&V activities is
only valid in the context of the applied V&V capabilities
of the tool, no general conclusion on the correctness of a
model should be drawn, unless all of the desired
properties have been confirmed on the level of the
generated code.

In the context of the executed V&V activities the
following types of faults were found by model
transformation: dead code on modelling level,
performance issues (potential loss of signals in case of
high data rates) due to insufficient specification,
deadlock after loss of a signal.

In the following chapters the experience with model
transformation, code generation and V&V on level of
the automatically generated code is reported. The
activities were executed in the context of the ACG
(Automatic Code Generation) [4] and ASSERT
(Automated proof-based System and Software
Engineering of Real-Time systems) [5] projects.

Chapter 2 gives an overview on the applied model
transformations. Chapter 3 provides details of the
transformation from UML2 and chapter 4 from 3ADL.
Finally, in Chapter 5 conclusions are drawn.

2 OVERVIEW ON THE APPROACHES
The models were established in the notations of UML2
and 3ADL and then transformed into the notation of
ISGL. 3ADL (ASSERT AADL) is an extension of
AADL defined by the ASSERT project. AADL [6] is a
notation defined and maintained by SAE, the Society of
Automotive Engineers.

AADL supports model-based embedded systems
engineering. It is standardised and has been developed
by and for the avionics, aerospace, automotve, and
robotics communities. Textual and graphic notation with
precise semantics for embedded and real-time systems,
and UML profiles are supported.

ISGL is a language to model distributed real-time
systems expressing their behaviour by Finite State
Machines (FSM). Algorithmic code can be plugged in
by functions executed during state transitions. Such
functions are automatically integrated by the ISG tool,
when generating the distributed execution environment.

The ISG tool supports verification of a model prior to
code generation. Code is only generated when the static
checks are passed successfully. To observe the
properties of the code derived from the model
“observers” are added to the generated code
automatically. The observed properties are presented in
textual and graphical form and in an rtf-document
automatically generated after a run.

2.1 Transformation from UML2
The used model reflected at high level the functionality
of a so-called Telecommand and Telemetry Manager
(TMTCMgr) which receives commands from ground
control and reports to ground on the success of
command execution. The model consists of four
processes for managing of command processing,
queuing, verification and routing. It was established by a
separate team in the course of the ACG project and built
using the TAU tool [7] from Telelogic.

At the time the model transformation was scheduled in
the ACG project, the “XMI”-files exported by the TAU
tool where not usable. Element IDs were not unique or
references where not properly specified, so that the
structure of the model could not be reproduced from the
exported file even in theory.

Therefore it was necessary to re-establish the model
using a different tool. Eclipse UML2 was selected, also
due to the fact that libraries for XMI input and output
where directly provided. The model was manually re-
established using the UML2 editor of Eclipse.

The saved model XMI-file is taken as input for
generation of inputs to the UML2ISGL bridge from
which the ISG generator produces the executables after
successful verification of the model expressed in ISGL
notation.

From the UML2ISGL bridge an ISGL file and C files
are generated. The ISGL file defines the behaviour,
performance and distribution of the processes. The C
files include functions implementing the algorithms
defined on UML modelling level. These functions are

plugged into the FSMs at the corresponding state
transitions.

The transformation only considers declared active
classes (processes) and signal types. The FSM used for
Use cases as well as message sequence charts (MSCs)
are not considered and were not transposed to the
Eclipse. They are not relevant for code generation and
also do not provide any further formal refinement of the
properties expressed in the model which could be used
for verification or validation.

MSCs in particular represent the modeller's notion of
how the internal system communication should look. In
the specific case, the modelled MSCs were to be
considered informal and took more of a documentation
role than being an actual specification.

If at all, MSCs can be considered as test templates,
which were to be overridden by the automatic and more
comprehensive test cases automatically generated by
ISG.

Fig. 2-1: Transformation from UML2 to ISG incl. Auto-Coding and Auto-Testing

2.2 Transformation from 3ADL
The TMTCMgr as established during the ACG project
was re-built in 3ADL. It was restructured to specify
architecture including system decomposition,
distribution and communication channels.

In the course of the ASSERT project, an UML2 profile
for architectural specification in analogy to AADL was
defined. An experiment was exercised to extend the
previously described UML2ISGL transformator to
accept such 3ADL-based models to provide further tool
diversification and analysis of the profile for
applicability in terms of verification and code
generation.

Both the 3ADL architectural profile and AADL mainly
focus architectural modelling, so that at the time the
experiment was executed no definitions on the

specification of behaviour in 3ADL models were
available. Therefore the concepts used in the previous
UML2-to-ISGL-transformation experiment were reused.

However, while in the previous experiment architectural
information such as CPU-mapping and communication
channels had to be made up, the 3ADL profile shall
provide a defined framework to actually model such
information.

Unfortunately, at the time the experiment was executed,
the 3ADL profile specification was incomplete
regarding the specification of bindings of software
components to hardware. Therefore this information
could actually not be used.

However, as the concepts of ports and port connections
was more precisely defined in 3ADL – based on its
AADL roots – than in pure UML2, this feature was now
properly used to describe the connections between the
components.

UML2 model

UML2ISGL

ISGL C-Files

ISG

Verification

ISG Code-
Generation

Final code

ISG

Auto-Test

ISG report

3 THE TRANSFORMATION FROM UML2

3.1 Verification and Validation

3.1.1 Static Checks on the Transformed Code
By the static checking tools of ISG it was detected, that
the UML model was formally incomplete. Some signals
were identified which were either sent but not received
within the model, or vice-versa. It had to be derived - by
analysis - that these signals are intended to cross the
system border. The entity receiving resp. sending these
signals therefore was assumed to be the ground station.

While the topic of the model was clearly identified to be
the telecommand manager only and therefore the model
cannot be expected to cover all parts of the system,
including the full on-board and ground system, the only
formal indication on signals crossing the system border
is a lack of sender or recipient within the model.

Without any explicit declaration of external interfaces in
the formal part of the model (i.e. not including use
cases), this inhibits any chance for detecting formal
incompleteness of a model based on the sender-recipient
relation. The respective signals could be marked as
external signals or TMTC signals by an appropriate
stereotype in the UML model.

3.1.2 Property Analysis of the Model and the
Generated Code
The evaluation of the properties of the model and the
generated code concentrates on the following feedback:

• coverage of states and state transitions

As the model shall be complete and correct, every
state and state transition shall be covered. The
number of state transitions, especially the
branching ratio, shall be as expected.

• timing diagrams

The periodic occurrence of signals for all
processes indicates that the FSMs can continuously
be processed. When the periodicity is clearly
visible, no overload occurs.

• Message Sequence Charts (MSC)

The signal flow and the signal contents can be
analysed by the information provided with the
MSCs. By filtering of the provided information
further properties can be evaluated like the number
of lost signals.

Equivalent and even more information can be obtained
from the textual report on properties, e.g. performance

properties on bus and CPU utilisation1. However the
analysis of the above information was sufficient to
verify the model and identify the faults described below.

3.1.2.1 Coverage
The coverage of states and state transitions is shown in
Fig. 3-2.

Along each transition the associated incoming message
of the state left is printed together with the line number
in the ISGL/CPT file and the number of occurrences of
this state transition. This latter information allows
verification of the FSMs and of the generated code: the
sum of state transitions by which a state is entered
should be identical with the number of transitions by
which it is left.

Moreover, it can be verified that the transition from the
initial state to the first operational state only occurs once
(see e.g. process "pktmanager", state "pseudo_start",
incoming message "start_cmd"). Similarly, the number
of state transitions for process "stimulator" into state
"running1" and "running2" should be identical (possibly
±1 depending on when the termination event occurred),
because the stimulator toggles between both states.

Non-covered states and state transitions are indicated by
red colour.

For two processes "pktmanager" and "queue" states and
transitions are not covered.

In process "pktmanager" the "else"-branch of the "if" on
the value of "PID" – the data item transported with the
incoming telecommand – is not covered, with the other
branches being covered for the values of "PID"
considered to mark valid incoming commands. A deeper
analysis yielded that the "else"-branch is dead code (in
the original model), as for an invalid command a
previous branch would forbid reaching the given "if" in
any case.

In process "queue" a state and two state transitions are
not covered. Analysis of the (original) model shows that
the state and state transitions are related to loss of a
signal. The queue process keeps a counter that
represents the difference in number between the number
of validation requests sent to the "verify" process and
the number of answers received. Whenever this counter
is non-zero on receiving a new telecommand it can be
deduced that some of the validation requests or answers
were lost in transit.

1 Such performance properties were not part of the
original model, and no requirements are known.
Therefore verification of such properties is out of
scope.

Therefore a new generation cycle is executed, enforcing
loss of signals at a probability of p=0.1. The results are
shown in Fig. 3-3.

Having identified the uncovered state related to the loss
of signals in process "queue" a fault in the fault-tolerant
algorithm was detected which should protect against loss
of signals.

3.1.2.2 Analysis of the Control Flow
The behaviour, the control flow and performance
constraints were analysed by timing diagrams and
message sequence charts (MSC) for the nominal and
non-nominal (fault injection) cases. Subject of fault
injection was loss of signals.

Loss of signals was considered for the following cases:

• only one process can lose signals,

• all processes can lose signals (pktmanager, queue,
routing, verify).

Surprisingly, the state and the two transitions of "queue"
are still not covered, and even states and transitions of
pktmanager and routing are not covered. The
explanation is: a deadlock occurred.

To explain the origin of this deadlock it is necessary to
have a more detailed look at the control flow (c.f. Fig. 3-
1)

As already explained the process "queue" maintains a
counter representing the difference between the number
of validation requests sent and validation answers
received. This counter is checked whenever a new

telecommand arrives at the process "queue" for
queueing.

The source of the telecommand arriving at "queue" is
the process "pktmanager". However, after receiving a
telecommand, "pktmanager" enters a different state
where further telecommands from ground will be
ignored and therefore cannot be forwarded to the
process "queue".

The process "pktmanager" only leaves this state for the
state in which telecommands can be processed when the
result of the verification is received. If, however, either
the message containing the verification result or even
the request for verification as sent by "queue" is lost, the
process "pktmanager" will not return to this state.

The process "queue" will therefore never get the
telecommand which is needed to actually trigger the
signal-loss-detection code. The system deadlocks.

3.1.2.3 Some Remarks on V&V of the Model
Regarding the loss of TCs this could be a matter of on-
ground processing as well, but there is no evidence in
the received UML model, where such problems shall be
solved. Therefore from a rigorous verification point of
view it is stated that the TMTCMgr does not tolerate
loss of TCs or loss of internal signals in the shape
defined in the received UML model.

A synopsis of the faults found in the model during the
transformation exercise is presented in Fig. 3-4.

Fig. 3-1: Control Flow of the Command Manager

Fig. 3-2 : State Transitions without Loss of Signals Fig. 3-3: State Transitions with Loss of Signals

8a Distribute verified cmd

8b NAK
if failure occurred
during verification

3
Store

+
verifiy

9 Ready again

6
Verification result

ACK or NAK

7
Ready for
next cmd

5 Verify cmd

PktManager

Routing Queue

Verify

GroundControl
2 Blocking

4 Cmd was stored

1 Send cmd

Fig. 3-4: Faults found in

3.2 Conclusions on Model Transformation

3.2.1 Principal Considerations
The Unified Modelling Language (UML) is actually a
set of languages due to the presence of semantic
variability points (SVPs).

When transforming an UML2 model to another notation
like ISGL with the intention of code generation, all such
ambiguities of the UML2 modelling language have to be
resolved, analogous to the descent in abstraction levels
normally performed on manual transformation of an
abstract model into code (Fig. 4-1).

While in manual coding a developer would use
experience and additional knowledge of information
outside the model to concretise the definitions of the
model, automatic code generation, (equivalent)
transformation or verification require the explication of
such information.

The information required for concretisation in the
automatic case must be present either in the model itself
or must be automatically deductable from it by the
semantic rules of the language. In order to reduce
complexity and thereby errorproneness and effort for the
transformation, the deduction should be straightforward.

8a Distribute verified cmd

if fai
d i

3
Store

+

9 Ready again

6
Verification result

ACK

7
Ready for
next cmd

5 Verify cmd

PktManager

Routing Queue

Verify

2 Blocking

4 Cmd was stored

 M
W

 Poten ss of TCs

 Dead code on
modelling level

 Deadlock in case of
loss of signals

 Dead code on
modelling level

 Deadlock in case of
loss of signals

 Deadlock in case of
loss of signals

Fault-tolerant approach does not work:

lost signal is lost, next signal is duplicated
or NAK

tial for lo
the model by automatic test

There is a third place in w
present: The transformator
in this case the informatio
users of the modelling lang
Formally, the transformator
semantics of the language
comply with the specificati

Fig. 3-5: Detail and

In cases where the required
either the model or the sem
of both must be extended,
additional information w
transformator, as was done

8b NAK
lure occurred

ifi i

1 Send cmd

issing requirement
CET or uplink rate

Id

Analysi

Design

Co

Le
ve

l o
f D

et
ai

l

hich the information may be
 or code generator. However,
n is essentially hidden from
uage and the transformation.
 does constrain or modify the
and thereby actually does not
on.

 Abstraction in Models

 information is not present in
antics of the language, either

e.g., explicitly by introducing
hen developing a model

 in this experiment.

GroundControl

ea

s Model

 Model

de

Le
ve

l o
f A

bs
tra

ct
io

n

It also has to be considered that incomplete or missing
explicit semantics make verification of such a model
meaningless, as missing semantics imply missing
constraints for the modeller regarding "building the
system right".

In case of the provided TAU model, no performance
issues were modelled, as UML2 does not require the
specification of performance figures, even it does not
support such a feature at all for verification purposes.

While it could be argued that this is essentially a flaw of
the model, it is also an indication that UML as a
language is not well suited for modelling realtime
systems.

The modelling language is also to be considered as part
of the tooling approach and therefore has to fulfill the
same requirements as the tools themselves. Although
there are many off-the-shelf languages and tooling
solutions available on the market, a principal "make-or-
buy"-decision based on a rigorous analysis process is to
be made for a language and the associated tools like for
any other software-based system or part thereof.

Tools are typically deployed to simplify the work of
their users so that these can concentrate on the relevant
parts of their work. Productivity cannot be considered as
rising if the products are qualitatively inappropriate.

Therefore tools must also guide their users to avoid mis-
and underspecification. This clearly is not the case with
most UML-tools, which are designed for general-
purpose activities due to marketing considerations and
therefore cannot consider specific needs in specific
projects. Still the transformation of the abstract UML2
model into another abstract modelling language (ISGL)
together with the setup of a mockup for automated
stimulation of the system in ISGL as required by this
modelling environment identified the performance
issues.

3.2.2 Specific Choices
The structure-based approach applied in the UML2
model therefore had to be transformed into the
specialised structural template of ISG. It was therefore
assumed that each class would contain at most one
Finite State Machine. All classes containing such a state
machine were considered to represent ISG process types
with exactly one process instance. All other classes were
ignored, as in this experiment, such classes were only
declared but not used in any part of the model. The
presence of such unused classes is an evidence of further
dead code in the model, at least in its current shape.
Currently, no message is issued on detection of such
dead code by the UML2ISGL bridge, but this is a future
issue for the transformator raised by this discussion.

Whether such classes would have been used in a future
version of the model is not known.

Relationships between classes were also ignored, as ISG
does not require or allow the specification of particular
relationships between processes or process instances in a
similar manner. Instead, such relationships are expressed
by the actual presence of interaction between the
processes or process instances in the behavioural part of
ISG.

No information regarding the distribution of the
processes among available CPUs was provided in the
UML2 model, therefore all processes were assumed to
be located on the same, single CPU. Furthermore, no
information about the channels between processes was
provided in the UML2 model, therefore a general, single
virtual bus was established.

UML Properties declaring attributes of a class or a
Finite State Machine were transformed directly into
process instance variables in the generated C-files.

The signal definitions available from the declared
interfaces were used to establish the order and format of
ISG signal attributes in the packets sent between
processes.

With the introduction of a counter-piece to UML2
pseudo-states, translation of UML2 Finite State
Machines into ISG Finite State Machines is almost
straight-forward. However, four issues of ambiguities
either in semantics or in the relationship between
concrete and abstract UML2 syntax had to be resolved.

3.2.2.1 Accessing Signal Attributes
The first issue concerned access to attributes of received
signals. While in diagram form the target variables for
values from the signal are written in parenthesis behind
the name of the triggering signal type, thereby declaring
the way to access these attributes, this construct cannot
be directly translated into the abstract syntax. The
UML2 standard defines that attributes of signals in
expressions may be accessed as <signal-
name>.<attribute>. However, no clear definition is
presented on how to retrieve the object representing the
signal for use in a ReadStructuralFeatureAction. It was
therefore defined that a ValuePin with expression
"signal" shall denote the object instance representing the
recently received signal.

3.2.2.2 Transitions triggered by multiple Signals
Secondly, in process "PktManager" one transition from
state "ValidatePkt" is triggered by the reception of two
signals. Due to the fact that the attributes of both signals
were used in the effect activity of the respective
transition it was to be assumed that both signals had to

be received in order for the transition to fire. As the
retrieval and storage of signal attributes had to be
explicitly expressed by ReadStructuralFeatureAction in
the abstract syntax, the transition was separated so that
the two signals were received one after the other,
triggering an additional transition in between. As it
could not be found from the model whether the signals
would always come in a specific order – evidence of the
opposite was found – two alternatives were introduced
to handle both possible orders.

The second alternative was added manually on UML2
level. In principle, this could also be handled by the
transformator given that the addressed signal would
have been uniquely identifiable in the ValuePin of the
ReadStructuralFeatureAction elements accessing signal
attributes. In that case, all trigger signal types would
have to be associated with the respective transition and
actions would have to be provided – in this case in the
process of transposing the model from diagrams to the
abstract syntax – extracting the attributes of each signal
into the specified process instance variables.

The transformator would then have to extract the parts
relating to the access to each of the signals and
introduce additional alternatives for each possible order
of reception, associating the extracted access actions for
each signal to the appropriate transitions.

The implementation of this process was considered too
time-consuming regarding the schedule of the project
and in view of only one such case in the model.

In general, the semantics of multiple triggers on a
transition in UML2 is undefined. Multiple triggers on a
single transition can be interpreted as expressing that the
transition is triggered by

• the reception of either signal, or

• the reception of the signals in the given order, or

• the reception of the signals in any order, or

• the simultaneous reception of the signals – in case
of synchronous communication with "zero-time"
semantics.

It was only possible to associate one specific of these
semantics to the multiple triggers in this model as

• the attributes of the two signals were assigned to
different process instance variables and both
variables were used in the transition effect,
implying the requirement that both variables must
be initialised before the transition could be
triggered, and

• the fact that the two signals were sent in both
possible orders from different origins in the model.

This means that the actual semantics were defined by the
context of the model and not by the modelling language
or an a-priori specification of the semantics used.

This example shows the conflict between the intentions
of the UML2 authors and the goal of code generation.

3.2.2.3 Generic Actions and Conditions
It was a goal of the UML2ISG bridge design to use as
many explicitly available elements of UML2 as possible
to directly express the diagrams. While opaque elements
such as Activity or Note are available, from a
transformator point of view these essentially hide
information or require the introduction of possibly
sophisticated parsers for the contained textual
information. This is not always possible, either due to
lack of human resources, schedule and budget or due to
lack of any formal grammar which would apply to that
user-defined information.

Almost all elements of the diagrams could be expressed
directly, except for guard expressions on conditional
transitions from choice pseudo-states and for one
increment and one decrement expression in process
"Queue".

Therefore it was defined that the transformator would
expect expressions and text inside opaque Activity
nodes to represent valid C-code. This way, these
expressions and code fragments could be directly
inserted into the generated C-UDFs. The requirement
was already met in all actions which were to be
expressed by opaque Activity nodes. However, most of
the conditions present in the model had to be rewritten
during the manual transformation to abstract syntax.

In addition it was defined that any expression of the
form "self.<var>" represents a reference to the process
instance variable with name "<var>". All expressions
and opaque Activity nodes had to be rewritten in this
way during the manual transformation to abstract syntax.
The transformator replaces these expressions by the
appropriate code as required to access the given
properties in the context of the generated code.

3.2.2.4 Missing Target Process Specifications
Also, no target was specified for the send-signal-actions
in the Finite State Machines anywhere in the UML2
model. As port specifications on the classes seemed to
imply that any signal type is handled by at most one
class/process, the specification of the destination process
required by ISG was found by searching for a process
handling the given signal.

This worked in all but one case, where the outgoing
signal "inqueue" crossed the system border of the
model. A special rule was established by which all such

signals were to be sent to the automatically generated
process "initproc" (which controls system initialisation),
which would merely receive the signal but not react on
it.

3.2.3 Summary Conclusions
A considerable amount of issues regarding code
generation from UML2 models was identified and
resolved.

The experiment shows that most of the semantical
ambiguities were already resolved in the transformation
from concrete to abstract syntax, an activity which was
not planned at all. This leads to the conclusion that the
UML2 abstract syntax fits better with the constraints of
code generation, although this is only valid in the
context of the applied elements of UML2 and the
specific model used.

Also modellers must take care not to make extensive use
of the many opaque elements of UML2. These are
intended to allow general applicability of the modelling
language, a goal which in fact contradicts the goal of
strict verification.

In addition, the issues regarding the transformation from
the structure-based concept of UML2 to the behaviour-
based concept of ISG shows that the definition of a
UML2 profile is constrained by the basic structure of
UML2.

Furthermore, information may be present in the model
which cannot be found or processed by a transformator.
The resolution of the ambiguity regarding multiple
signals as transition trigger provides an example for this.

Resolution of such semantic ambiguities may not only
be important to allow code generation at all. It is, of
course, another goal of code generation to generate
efficient code. If a transformator or code generator had
to fall back to the most general resolution in some cases,
this would most probably also be the most inefficient
solution.

While the authors of the UML2 intended that the
semantic variability points be resolved by each team to
create a tailored instance of the UML to be used,
practice tells us that this intention is not followed by the
users of the UML2.

Part of the reason for this may be that the number of
known semantic variability points – i.e. those that have
been included in the UML2 on purpose – is
overwhelming and a complete resolution seems
impracticable to many UML users.

In addition many points have been identified by
researchers where the semantics of the UML2 are
incomplete but without any indication that this

incompleteness was intended as such by the authors of
the specification. These points can be seen as
unintended semantic variability points.

It is difficult not to reason whether a language so
complex that even its creators have difficulties defining
a sound semantic is a good choice for everyday use by
non-language-experts in the field of critical systems
where a sound semantic is absolutely crucial for the
success of a project.

This raises the question whether to follow the UML2
track and apply profiles, requiring

• additional verification means to identify conflicts,
which then have to be manually solved,

• additional and possibly complex means for
transformation to the application domain,

or to define domain specific languages which are
directly targeted at the verification and code generation
requirements driven by the application domain, e.g.,
distributed real-time applications. Where domain-
specific languages only allow such constructs which can
be successfully transformed into efficient and correct
code, UML2 and profiles may allow constructs which
will cause problems on automatic transformation and
implementation.

4 THE TRANSFORMATION FROM 3ADL

4.1 Verification and Validation
Regarding behaviour and performance the same V&V
measures were applied as in the ACG experiment.

However, the specific concept of hierarchical
decomposition and the resulting need for delegation of
communication between hierarchy levels lead to
additional points for verification.

As a connection between two ports can consist of a
number of partial delegate and sibling connections at
different component levels and at each level a bus
binding for that part connection may be specified, both
3ADL and AADL allow to specify port connections
which are bound to different busses at different hops.
This would mean that the ports which are shared by the
part connections bound to different busses would
essentially take the part of a transceiver.

Even if this would be considered legal at all in AADL, it
should be considered bad practice. After all a port under
most circumstances is merely a modelling placeholder
required to facilitate hierarchical decomposition and
connection delegation. It is not an active component
which can take the part of a transceiver, in contrast to,
e.g. the device AADL component.

This example shows that unfortunate selection of
concepts for modelling languages can introduce
additional verification problems, although this specific
case it is probably tolerable because a check for such a
condition can be implemented without much effort,
informing the user about such an inconsistency.

4.2 Conclusions on Model Transformation

4.2.1 Principal Considerations
The 3ADL concept as available at the time of definition
of the required mapping concentrates on architectural
modelling. The definition of behaviour is essentially
undefined or at most implied by the use of AADL
standard properties for specification of source code for
threads and subprograms.

For 3ADL a complete mapping of AADL to UML is not
yet established. Similarly, the 3ADL to ISGL mapping
does not support all possible 3ADL constructs. For
example it was decided that threads behaviour may only
be specified in the form of a UML state machine defined
in a UML class representing the thread type.

The mapping from 3ADL to ISGL is defined by several
steps. In the first step the instantiated structure of the
specified system is derived. Connections for event, event
data and data ports are resolved.

In the second step a ISG process type with a single
instance is defined for each 3ADL thread instance. This
corresponds to a flattening of the hierarchical structure
of the 3ADL system definition.

The FSM for the ISG process type is generated from the
UML state machine associated with the UML class
defining the 3ADL thread type. This association is
outside the scope of 3ADL.

4.2.2 Specific Choices
In contrast to the ACG experiment, no elements from
the model were actually ignored, as it was defined
according to the concepts and modelling guidelines of
the 3ADL profile. The language elements used are
therefore more suitable for the use in specification of
distributed real-time systems and matches the concepts
of ISGL more closely.

5 CONCLUSIONS
In comparison of the two modelling approaches by the
performed work the 3ADL approach is clearly more
suitable for the modelling of distributed real-time
systems than generic application of UML2, as it more
strictly defines both the domain of allowed modelling
elements, but also the modelling process.

This leads to the conclusion that a constructive approach
to the definition of domain specific languages, i.e.
building up the set of modelling elements, is more
reasonable than a destructive approach, i.e. reducing the
set of modelling elements from a generic, already
existing language.

The results presented above also show that model
transformation can work, but imprecise modelling
notations may prevent a reasonable transformation. In
the investigated example certain assumptions could be
made to make an automated transformation feasible.
However, such a transformation might not be reusable
for any other model. A manual transformation should
not be considered as it is inefficient and may introduce
errors.

On the other side the usefulness of model transformation
was demonstrated regarding complementing tool
capabilities for verification and validation, especially for
identification of non-anticipated faults.

Surprisingly, “non-anticipated” got a meaning not
considered before: presence of faults not detected by a
tool is to be understood as “non-anticipated”, as the tool
suggests that no faults exist.

However, as a practical experiment with different
modelling notations it also shows that proper
requirements engineering w.r.t. the intended use –
application domain, verification, code generation,
tooling in general – is absolutely required.

It is not enough to establish some language based on
previous manual design practice. Meta-modelling cannot
work miracles based on the old principles. Information
in a model needs to be presented in a way which
provides both ease of use for the modeller and is easily
and directly accessible to tools.

Essentially, building blocks should not only manifest
themselves in the form of reusable model parts. They
should also be explicitly be considered when defining
the meta-model. Instead of copying a detailed model for
the same component from project to project and
manually adopting the model to the interface needs of
the new project, the component should simply be
declared as present and tools should take the part of
actually modelling it. ISG, for example, allows
definition of telecommand handling simply by declaring
the existence of telecommand literals. No explicit
modelling is necessary.

Finally, the observed results show that more effort needs
to be put on precise semantics of modelling notations in
order to allow a higher degree of diversification and
model exchange based on automated model
transformation.

6 REFERENCES
[1] Object Management Group (OMG), “UML 2.0 Superstructure Specification: Revised Final Adopted

Specification”, Version 2.0,, ptc/04-10-02, October 2004.

[2] 3ADL/ASSERT AADL: Patrice Boisieau, Nicolas Gianiel, Reconciling the Needs of Architectural
Description with UML, Deliverable D4.1-3 Issue 1 Revision 1, April 2006

[3] ISGL, ISG Language, http://www.bsse.biz/products/isg

[4] Automatic Code Generation (ACG), ESTEC contract no.18670/05/NL/GLC, Noordwijk, The Netherlands,
2004-2006, ACG-TN-6-SE-BSSE, V1.2, 16.11.2006, Report on Experiment #3: The Use of ISG, DARTT
and DCRTT,

[5] ASSERT: Automated, proof-based System and Software Engineering of Real-Time systems, Integrated
Project 004033 of FP6 of the European Union, 2004-2007

[6] AADL, Architecture Analysis and Design Language, http://www.aadl.info

[7] TAU tool from Telelogic, http://www.telelogic.com/products/tau/index.cfm

	A
	ABSTRACT:
	INTRODUCTION
	OVERVIEW ON THE APPROACHES
	Transformation from UML2
	Transformation from 3ADL

	THE TRANSFORMATION FROM UML2
	Verification and Validation
	Static Checks on the Transformed Code
	Property Analysis of the Model and the Generated Code
	Coverage
	Analysis of the Control Flow
	Some Remarks on V&V of the Model

	Conclusions on Model Transformation
	Principal Considerations
	Specific Choices
	Accessing Signal Attributes
	Transitions triggered by multiple Signals
	Generic Actions and Conditions
	Missing Target Process Specifications

	Summary Conclusions

	THE TRANSFORMATION FROM 3ADL
	Verification and Validation
	Conclusions on Model Transformation
	Principal Considerations
	Specific Choices

	CONCLUSIONS
	REFERENCES

